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ABSTRACT

A numerical study of steady, buoyant, incompressible water
flow and heat transfer through a spherical annulus has been
made. A two dimensional computer code based on the TEACH code was
rewritten in spherical coordinates to model the Navier-Stokes
equation and to model fluid turbulence with a k-t turbulence
model. Results are given for the total system Nusselt number,
local heat transfer rate and fluid flow characteristics for both
buoyant and non-buoyant laminar and turbulence modeled flow.
Incorporating both the turbulence model and buoyancy into the
calculations improves the results.

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
No. W-7405-Eng.-u8.
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NOMENCLATURE

A surface area of inner sphere

Cu,C1,C2 coefficients in turbulence model

Cp " specific heat at constant pressure

E von Karman constant

g acceleration of gravity

g acceleration of gravity in radial direction

gq acceleration of gravity in longitudinal direction

h heat transfer coefficient

k turbulent kinetic energy per unit mass

K thermal conductivity of fluid

m fluid mass flow rate

NUg total system Nusselt number

P mean generation rate of turbulent kinetic energy per unit
mass

Py heat transfer P - function

p p#essure

qQ, - wall heat flux

r radial coordinate

ry outside radius of inner sphere (= 0.1397 meters)

o inside radius of outer sphere (= 0.1683 meters)

Ry Richardson number (= Bg (ro - ri) (Tin - Tout) / Vinz)

Re ' gap Reynolds number (= pUA (rO - ri)/v)

T temperature

Ta average radial temperature

T, average temperature of inner sphere surface
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g , 0

k' %

bulk fluid temperature ( = (Tin L+ Tout)/Z)
wall temperature
mean longitudinal velocity
average velocity at equator
C e 1/2
friction velocity ( = (Tw/p) )
mean radial velocity
distance from wall

%

dimensionless wall distance (= /v)

Yok
water volume coefficient of expansion
effective diffusivity

dissipation rate of turbulent kinetic energy per unit
mass

longitudinal coordinate

von Karman constant

dynamic viscosity

turbulent viscosity

kinematic viscosity

wall shear force

density

Prandtl number

turbulent Prandtl numbers for diffusion of k, €, and T

variable

_iv_



Subscripts

in

out

values

values

values

values

values

at

at

at

at

inlet region

the edge of cell adjacent to the wall
exit region

node point adjacent to wall

the edge of the viscous sublayer






INTRODUCTION

The objective of this study is to predict the heat and
momentum transfer of fluid flow through a spherical annulus. This
problem is of interest in the temperature control of gyroscope
gimbals, the cooling of spherical fuel elements in homogeneous
nuclear reactors, and the guard cooling of spherical containers,

The problem analyzed involves the upward' flow of water
vertically into the annulus space between two concentric spheres
as shown in Fig. 1. As the fluid enters the annulus and begins
flowing around the spherical shape, its cross-sectional area
increases considerably . which in turn decreases its fluid
velocity. The fluid decreases in velocity until it reaches the
equator. After the equator, the fluid velocity increases as the
flow cross—sectibnal area decreases. The fluid flow pattern
exhibits a recirculation zone along the outer sphere in the entry
region due to the sharp corner where the entrance pipe joins the
annulus. The flow also exhibits changing patterns as it moves
along the annulus. The flow exhibits aspects of a stagnation flow
on the inner sphere upon entering, a boundary layer jet flow along
the inner sphere as the fluid flows toward the equator, and then
separation of the boundary layer along the inner sphere with a
resultant recirculation region downstream of the separation
point. In the region downstream of the equator, the flow assumes
a velocity profile similar to that in the space between flat

plates.



In this study the inner sphere is maintained at a temperature
near zero degrees centigrade, and the outer sphere is insulated.
The fluid entering is water at a temperature of 50°C. The water
cools as it flows around the annulus and exits at the top. The
water temperature 1s coolest near the inner sphere with the
majority of heat transfer occurring in the entrance region along
the inner sphere. The cooled fluid along the inner sphere
generates buoyancy forces that retard the flow and may cause
boundary layer separation.

Theoretical studies of flow through a spherical annulus have
been reported by several investigators. Cobble (1963) assumed a
simplified tangential velocity distribution and then calculated
heat transfer based on the energy equation. Bird et al. (1964)
presented the solution to isothermal creeping flow in a spherical
annulus. Astill (1976) analyzed laminar forced convection flow
with simplified boundary layer assumptions for air flowing between
isothermal spheres. Ramadhyani et al. (1983) and Tuft and Brandt
(1982) analyzed laminar forced convection in a spherical annulus
without considering buoyancy-driven natural convection. Brown
(1967) analyzed natural convection flow in a closed spherical
annulus, and Ramadhyani et al., (1984) analyzed combined natural
and forced convection laminar flow at low gap reynolds numbers.

Experimental studies have been reported by many investigators
for various combinations of sphere and annulus sizes. Ward (1966)
and Bozeman and Dalton (1970) provided a flow visualization study

of isothermal flow in a spherical annulus. Rundell et al. (1968)



observed a flow rate independent separation point located
approximately 45° downstream from the inlet along the inner
sphere, Upstream of the separatidn point, the flow 1is
characterized by a high-velocity jet of fluid along the inner
sphere with a relatively low—velocity return flow along the outer
sphere. The region of high velocity jetting fluld upstream of the
separation point is a region of high heat transfer. Beyond the
separation point, a return flow eddy is followed by a relatively
tranquil flow. This region exhibits a relatively 1low heat
transfer rate. Rundell measured temperature profiles and total
heat transfer for steady flow for two sets of sphere sizes.
Astill et al. (1978) and Newton (1977) investigated spherical
annulus flow and heat transfer experimentally. They presented a
correlation based on total heat transfer measurements, Tuft and
Brandt (1982) investigated spherical annulus flow for the case of
a constant temperature inner sphere and an adiabatic outer
sphere, They measured local and total heat transfer as well as
temperature profiles and separation point location. They also
analyzed laminar non-buoyant flow though an annulus configuration
shown in Fig. 1.

In this paper an extensive numerical study of spherical
annulus fluid flow is presented with detail comparisons with the
experimental data of Tuft and Brandt (1982). The laminar analysis
is extended by incorporating the effects of buoyancy. The
analyses were further extended by modeling the fluid turbulence

with a two-equation (k-g) turbulence model. This work is believed



to be the first two-dimensional analysis of the full Navier-Stokes
equations with a k-e turbulence model for steady, lncompressible,
spherical coordinate fluid flow and convective heat transfer.
This work evaluates the k—-e tubulence model by comparing it with
experimentally determined Lotal Nusselt numbers, with local heat
transfer rates, with temperature profiles and with inner sphere
boundary layer separation point locations. Ranges of fluid flow
for gap Reynold's numbers, Re, of 110 to 1086 were investigated
with water entering the annulus at 50°C and with convective
cooling caused by a nominally 0°¢C Inner sphere. The Richardson

number, R for this flow varied from 0.001 to 0.4,
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MATHEMATICAL AND PHYSICAL MODEL

Governing Equations

The numerical model is based on the solution of the steady
two-dimensional incompressible form of the time—averaged Navier-
Stokes equation, incorporating the Boussinesq turbulent-viscosity
concept. The turbulent viscosity is calculated from the two-
equation high Reynolds number form of the k-¢ turbulence model
developed by Launder and Spalding (1974) and Chieng and Launder
(1980). The governing equations in spherical coordinates may be

written in the following general form:

1 5 .
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where ¢ represents the dependent variables of longitudinal
velocity, U, radial velocity, V, fluid temperature, T, turbulent
kinetic energy per unit mass, k, and dissipation rate of turbulent
kinetic energy per unit mass, . A summary of these equations 1s
given in Table 1. The constants applicable to the k and €

transport equations are given in Table 2.

Near-Wall Model

Viscous effects, due to the no-slip condition on the smooth
spherical walls, are very influential on the flow, Within the
near-wall boundary layer, the velocity typically follows a
logarithmic law behavior. Two versions of the high Reynold's
number form of the k—e turbulence model were evaluated.

The version of Launder and Spalding (1974) gives the
relationship between the velocity at the node adjacent to the wall

and shear 3tress, T as:

/
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(2)

This relationship should be applied at a dimensionless wall
distance, y+, whose values are in the range 20 < y+ < 200. At
values of y+ < 20, the flow is assumed laminar. The dissipation,
€, at the first node adjacent to the wall is evaluated by:

3/14k 3/2
e = 2P (3)



and the average value of ¢ over the control volume at the wall is

evaluated by:

A
o 374 kp3/2 (Cuyz kg)
fo edy = ¢ > E— 1n [Eyp —£-1]. (%)

The second version of the k-e model evaluated is that of
Chieng and Launder (1980). Figure 2 shows the assumed approach
where the control volume around the wall adjacent node p contains
a viscous sublayer out to a distance yv‘from the wall, and the
turbulent kinetic energy varies linearly from the node adjacent to
the wall to Yye The connection between the velocity at the node

adjacent to the wall and the wall shear stress, T is given by:

%
Uuc % kvy2 1 (C z kv)
L¥ VvV _1ia (Ey S . (5)
T/ K p v

with the kinetic energy of turbulence, k, evaluated at the edge of
the viscous sublayer.
The dissipation, €, is again evaluated at the first nodal

point adjacent to the wall by:

3/uk 3/2
e = 2P (6)

Other models in the near wall region for €, 1in the
e-equation, were considered. The Amano and Jensen (1982) two
layer model, as applied to impinging Jjet flow, showed little
improvement in heat transfer over the Chieng and Luander (1980)

model. The Amano (1984) two and three layer models, as applied to



an abrupt pipe expansion case, did show a significant
improvement. Heat transfer in our spherical annulus occurs only
on the inner Sphere and represents a case similar to impinging jet
flow and thus the Amano and Jensen (1982) model is expected to
give similar results compared to the model by Chieng and Launder
(1980).

The mean generation rate, P, of the turbulent kinetic energy

at the first node adjacent to the wall is given by:

rw(Ue - Uv) TQ(Te - Tw) Yy
P = + T (1 - ;—) (7
Yo pkC ™k 2y e
p v Je

and the mean dissipation rate, €m’ is given by{

_ v . 1 2 3/2 _ 372 2 2
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and_

R = —4—Y__ 20, (12)

The local wall heat flux and near wall temperature profile

are ‘given as:

pcchuh (1 - 1) : % «)
pu_ D .- g, (= 1n (By H—=PB—) +p,] (13)

q, T "k P v

where Py is the P-function given by Jayatilleke (1969)

3/4

T -1) (1 + 0.28 EXP(-0.007 c/aT)) . (14)

Py = 9.24 (a/0

Numerical Solution Procedure

The method used for solving .equation (1) is the solution
procedure of the TEACH code, Patankar (1980). This program takes
a control volume approach with scalar variables evaluated at the
center of a control volume and the velocity vector quantities
evaluated at the control volume boundaries. The TEACH code
version used in this study uses a hybrid differencing scheme in
which central differencing is used when the control volume Peclet
number is less than 2 and upwind differencing is used for Peclet
numbers greater than 2. The problem of determining the pressure
distribution and satisfying mass conservation is overcome by

adjusting the pressure field so as to satisfy mass conservation.



This method is the so-called semi-implicit method for pressure-
linked equations (SIMPLE) algorithm.

For this study the TEACH code was rewritten from cylindrical
coordinates into spherical ‘coordinates. The energy equation to
model the heat transfer was added as well as the near wall models
for the k-e equations.

At the inflow boundary region, a uniform temperature and
velocity profile is given. The turbulence intensity (k/VinZ) is
assumed to be in the range of 0.005, and the turbulent length
scale (k3/2/e) is given by 0.03 Pye At the outflow boundary
region, the flow 1s assumed to be of the parabolic type. The
inner sphere temperature is specified and the outer sphere is
assumed to be adiabatic. A no slip velocity boundary condition is
applied at the sphere walls, and symmetry 1s assumed about the
vertical centerline.

Computations for laminar flow were made primarily with a
uniform mesh of 36 node points in the radial direction and 60 node
points in the 1longitudinal direction. Under-relaxation of the
conservation equations was required for convergence. Typically
the momentum equations required a relaxation parameter of 0.5, and
the pressure correction equation required relaxation parameters
from 0.8 for non-buoyant flow to 0.2 for buoyant flows.
Convergence occurred usually in less than 600 iterations, with one
iteration representing a solution of each conservation equation.
The convergency criteria were based on a normalized mass error
balance, with convergence assumed for values below 1 x 10—5. The

balance was calculated by summing the absolute values of the mass



flow errors at each node point divided by the total mass flow
rate. The computations were run on a CRAY-1 computer and, for a
60 x 36 mesh, required approximateiy 2 minutes of computer time.
Mesh independence studies for laminar flow were made at
Re = 110. Increasing the mesh longitudinally by 52% resulted in a
1% increase in total system Nusselt number, Nug, and the flow
separation point shifted upstream by 3%. The mean longitudinal
velocity, U, varied by 5% in the inlet region to less than 1% in
the downstream regions. Increasing the mesh radially by 55%
resulted in a 5% decrease in total system Nusslet number, Nug, and
the flow separation point shifted downstream by U3%. The mean
longitudinal velocity, U, varied by 4% in the inlét region to less
than 1% in the downstream regions. .
Computations for turbulent flow were made primarily using a
mesh with 12 radial nodes and 60 1longitudinal nodes. Under-
relaxation of the conservation equations for turbulent
calculations was also required. Typically the momentum equations
required a relaxation parameter of 0.5, the pressure correction
equation required relaxation parameters down to 0.2, and the k
and € equations required relaxation parameters of 0.3. Applying a
convergence criteria similar to that for laminar flow resulted in
convergence after approximately 1500 iterations. Increasing the
mesh longitudinally by 52% at Rg = 1086 resulted in a 2% decrease
in total system Nusselt number, Nug. The mean longitudinal
velocity, U, and turbulent kinetic energy, k, varied by 2% and 3%

respectively in the inlet region. In the relatively quiescent

downstream regions, the mean longitudinal velocity, U, varied by
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3% ‘and the turbulent kinetic energy, k, decreased as much as
14¢%. Increasing the mesh radially by U40% resulted in a 3%
increase in total system Nusselt number, Nug. The longitudinal
velocity, U, varied by less than 2%, throughout the flow. The
turbulent kinetic energy, k, varied by é% in the inlet regions to
values decreased as much as 14% in the downstream regions. The

computations were run on a CRAY-1 computer and, for a 60 x 12

mesh, required approximately 2-1/2 minutes of computer time.

RESULTS AND DISCUSSION

Laminar Flow

Analyéis of laminar flow throuéh a heated spherical anmulus,
without buoyancy effects considered, was peﬁformed by Ramadhyani
et al., (1983). Ramadhyani's analyses were duplicated in this
study using the spherical coordinate version of the TEACH code in
an effort to verify proper operation of the code. The results
gave identical flow patterns with a recirculation zone along the
wall of the outer sphere and separation of the flow along the wall
of the inner sphere occurring approximately three-quarters around
the sphere. Further work by Ramadhyani et al. (1984) in which the
buoyancy effects were modeled showed a strong effect on the
laminar flow patterns caused by buoyancy. Duplication of these
calculations again produced identical flow patterns and showed
that buoyancy effects may have a strong impact on heated flow in a
spherical annulus.

Computational results were obtained for the total Nusselt

number as a function of the gap Reynolds number for hot water flow

11



through the spherical annulus configuration shown in Fig. 1. The

total Nusselt number, NU is ctalculated from average inner sphere

8’

temperature, -average inlet and exit temperatures, and the fluid

mass flow rate by:

mcp (Tout } Tin) (ro } ri)

g AT, - T) K

NU (15)

Results were obtained for laminar flow with and without
buoyancy effects incorporated 1into the momentum equations.
Figure 3 shows results for total system Nusselt number for laminar
buoyant flow. The results show that the laminar buoyant model
underpredicts the total Nusselt number by 16% at a gap Reynolds
number of 1710. At a gap Reynolds number of 1086 the total Nusselt
number is overpredicted by 12%. For the non-buoyant laminar case,
the total system Nusselt number 1is lower 1initially at a gap
Reynolds number of 110 but soon increases and equals the values
for the laminar buoyant case for gap Reynolds numbers of 180 and
above. The results for both the laminar buoyant and non-buoyant
cases show an improvement over results calculated by Tuft and
Brandt (1982) as shown in Fig. 3. The calcu;ations in this study
for laminar flow were performed with a mesh that had 60
longitudinal nodes and 36 radial nodes, which is finer than the 16
radial nodes used by Tuft and Brandt (1982),.

The calculational results for the location of the separation
point of the boundary layer along the inner sphere are given in
Fig. 4. The results for laminar non-buoyant flow, as well as the

results of Tuft and Brandt (1982) for laminar non-buoyant flow,



shoWw a separation point near 80o at a gap Reynolds number of
110. The separation point is located in a region of adverse
pressure gradient with the experimental wall jet separating sooner
than predicted due to observed vortex motion and flow
instabilities. Incorporating the effects of buoyancy into the
laminar calculations, however, shows in Fig. 4 that buoyancy has a
marked effect on the location of the separation point. The
cooling of the fluid on the inner sphere wall gives rise to
negative buoyancy forces that act against the flow direction and
thus aid in causing separation. Incorporating buoyancy improves
the calculation of the location of the separation point at lower
gap Reynolds numbers but does not affect the results at higher gap
Reynolds numbers. The calculational results do show the trend of
the separation point moving downstream with increases in gap
Reynolds number.

Figure 5 shows calculated and experimental 1local heat
transfer rates for gap Reynolds numbers of 110, 465, and 1086 for
laminar buoyant flow. The maximum heat transfer rate occurs in
the inlet region where maximum wall jet velocities occur on the
inner sphere. The heat transfer rate decreases with increasing
angle due to the deceleration of the wall jet. A local minimum
heat transfer rate occurs at the location of the separation point
where the velocity gradient is zero and the fluid is stagnant.
Downstream of the separation point, a region of reverse flow
exists and the heat transfer rate increases. The flow reattaches
downstream of the separation point, and the heat transfer rate

assumes a relatively flat profile in the downstream low-velocity

13



region. Also shown is the calculated local heat transfer rate for
laminar non-buoyant flow at a gap Reynolds number of 110. At
higher gap Reynolds numbers, the difference between buoyant and
non~buoyant cases becomes small., The computed heat transfer rate
in the inlet region is considerably underpredicted. Experimental
observations show vortex motion, large temperature fluctuations,
and unstable flow geometfy in this region, which suggest that the
flow is turbulent with an associated increased heat transfer rate.

Calculated profiles of normalized average radial temperature
are shown in Fig. 6. For laminar buoyant flow the profile at a
~gap Reynolds number of 110 shows a profile that is much improved
over the non-buoyant case. At higher gap Reynolds numbers of 465
and 1086, the profiles that are shown in Fig. 6 for laminar
buoyant flow are also found to be very similar to the non-buoyant
laminar case. The temperature profiles are very much dependent on
the location of the separation point. Since a local minimum in
heat transfer rate, velocity gradient, and temperature is
associated with the separation point, the accuracy of these

profiles improve as separation is more accurately predicted.

TURBULENT FLOW

The buoyant laminar flow analysis was extended by
incorporating a k—e turbulence model (Launder and Spalding, 1974)
to calculate a turbulent viscosity.

Calculational results for local heat transfer rate at gap
Reynolds numbers of 110, U465, and 1086 are shown in Fig. 7. The

results show a high local heat transfer rate in the entrance
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region which falls rather sharply until it levels off to a fairly
constant value in the quiescent regions of the flow., Comparing
the turbulent calculations to the buoyant laminar flow results of
Fig. 6 shows that the k-¢ model results are improved in the
entrance region and follow more c¢losely the experimentally
determined slope of the local heat transfer curve at gap Reynolds
numbers of 465 and 1086. The higher heat transfer rates in the
inlet region along the inner sphere are due to large velocity
gradients in the wall jet. These large velocity gradients produce
high turbulent kinetic energies and associated high turbulent
viscosities and heat transfer coefficients. The wall jet velocity
drops off rapidly as the equator is approached and results in an
associated drop in turbulent heat transfer coefficient. The
values of dimensional wall distance, }ﬁ, vary considerably along
the inner sphere wall. In the entrance region where a wall jet
along the inner sphere exists, the values of y+ are initially very
high and remain relatively high until either the flow approaches
the equator or boundary layer separation occurs. Further
downstream, the flow 1is relatively quiescent and y+' becomes
smaller. At a high gap Reynolds of R, = 1086, the values of y"
vary from 233 to 43 in the first half of the annulus. In the
annulus downstream of the equator, the values of y+ vary from 34
to 19, For a gap Reynolds number of U465, the values of y+ from
the entrance to the separation point vary from 92 to 20, but
downstream of separation the values of y+ are below 20, and the

flow is assumed to be in the laminar sublayer.
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Results for total Nusselt number based on a k-e¢ turbulent
flow analysis are also given in Fig. 3. For buoyant calculations
the-k—e model gives similar results when compared to the laminar
buoyant analyses especially at high and low Reynolds numbers. The
results for non-buoyant turbulent flow shown in Fig. 3 are not as
accurate as those for buoyant flow at a Reynolds number of 110 but
soon equal the buoyant turbulent case results at higher Reynolds
numbers. The buoyant turbulent analysis, at Re = 110, predicts
more dccurately than the non-buoyant case the boundary layer
separation on the inner sphere and thus results in a more accurate
calculation of heat transfer. Applying the boundary conditions
from the k-e model of Chieng and Launder (1980) gave total Nusselt
number results that changed little from those of the Launder and
Spalding (1974) model.

Normalized average radial temperature profiles based on
turbulent flow are given in Fig. 8, Tﬁe calculated profile at a
gap Reynolds number of 1086 is more accurate than that at a low
gap Reynolds number of 110. Comparing the turbulent calculation
to the laminar buoyant flow calculation shows better agreement at
a gap Reynolds number of 110 for laminar flow and better agreement
for the k-e turbulence model at a gap Reynolds number of 1086.
Figures 9 and 10 show typical calculated horizontal velocity and
temperature profiles across the annulus at several locations for a
gap Reynolds number of 260.

Results for the location of the separation point using the
buoyaht k-e¢ model are shown in Fig. 4. The results fall between

the data of the non-buoyant and the buoyant laminar cases. At
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high gap Reynolds numbers, the buoyant k-e model did not give any
separation. Flow in the annulus up to the annulus equator
experiences a positive pressure gradient along the boundary layer
due to increasing cross-sectional area and decelerating fluid.
Boundary layer separation occurs if the momentum of the boundary
layer cannot overcome the pressure gradient. Downstream of the
- equator, a negative pressure gradient exists, and flows that have
not yet separated will tend not to separate. The non-buoyant k-
e model calculation did not predict any separation occurring over
the range of gap Reynolds number from 110 to 1086. 1In an attempt
to obtain a better calculation of separation point location, a
siﬁple mixing length model (lm = Kyp) was lncorporated into the
laminar analysis at the wall adjacent node. The results show in
Fig. 4 that this mixing length model gives the best results over

the range of gap Reynolds numbers considered.

CONCLUSIONS

It is believed that this study is the first analysis in which
the two equation k-e turbulence model and the full axisymmetric
Navier—-Stokes equations have been applied to steady spherical
annulus turbulent forced convection flow.

There are four main conclusions from this study of fluid flow

and heat transfer in a spherical annulus:

17



Incorporating a two-equation k-e¢ turbulence model improves
the computation of local heat transfer over a laminar model
calculation, especially in the entrance region where a high-

velocity stream of fluid flows along the inner sphere wall.

Incorporating buoyancy into the computations shows that
buoyancy forces are significant at lower gap Reynolds
numbers and strongly affect both the fluid flow pattern and
the location of the boundary layer separation point on the

inner sphere.

The location of the separation point of the boundary layer
along the inner sphere moves downstream with increases in

the gap Reynolds number.

Predictions of the location of the boundary layer separation
point along the inner sphere wall was more accurate at lower

gap Reynolds numbers than at higher gap Reynolds numbers.

18



REFERENCES

Amano, R. S. and Jensen, M. K., 1982, "A INumerical and
Experimental Investigation of Turbulent Heat Transport of An
Axisymmetric Jet Impinging on a Flat Plate," ASME Paper 82-WA/HT-
55.

Amano, R. S., 1984, '"Development of a Turbulence Near-Wall
Model and its Application to Separated and Reattached Flows,"
Numerical Heat Transfer, Vol. 7, pp. 59-75.

Astill, K. N., 1976, "An Analysis of Laminar Forced Convection

Between Concentric Spheres," ASME Journal of Heat Transfer,

Vol. 98, pp. 601-608. .
Astill, K. N., Kerney, P. J., and Newton, R. L., 1978, "An
Experimental Investigation'of Forced Convection Between Concentric

Spheres at Low Reynolds Number," Proceedings of the Sixth

International Heat Transfer Conference, 5, pp. 179-184.

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1964,

Transport Phenomena, John Wiley and Sons, New York, New York, pp.

117-118.
Bozman, J. D., and Dalton, C., 1970, "Flow in the Entrance

Region of a Concentric Sphere Heat Exchanger," ASME Journal of

Heat Transfer, Vol. 92, pp. 184-185,

Brown, J. R., 1967, "Natural Convection Heat Transfer Between
Concentric Spheres," Ph.D. Dissertation, University of Texas,
Austin, Texas.

Cobble, M. H., 1963, "Spherical Shell Heat Exchanger-Dirichlet

Problem," Journal of the Franklin Institute, pp. 197-198.

19



Chieng, C. C. and Launder, B. E., 1980, "On the Calculation of
Turbulent Heat Transfer Downstream From an Abrupt Pipe Expansion",

Numerical Heat Transfer, Vol. 3, pp. 189-207.

Jayatilleke, C. L., 1969, "The Influence of Prandtl Number and
Surface Roughness on the Resistance of the Laminar Sub-Layer to

Momentum and Heat Transfer," Progress in Heat and Mass Transfer,

Vol. 1, pp. 193-329.
Launder, B. E., and Spalding, D. B., 1974, "The Numerical

Computation of Turbulent Flows", Computer Methods in Applied

Mechanics and Engineering, Vol. 3, pp. 269-289,

Newton, R. L., 1977, "An Experimental Investigation of Forced
Convection Between Concentric Spheres," Master's Thesis, Tufts
University, Medford, Massachusetts.

Patankar, S. V., 1980, "Numerical Heat Transfer and Fluid

Flow, Hemisphere Publishing Corp.
Ramadhyani, S., Torbaty, M., and Astill, K. N., 1983, "Laminar

Forced Convecﬁion Heat Transfer in Spherical Annuli," ASME Journal

of Heat Transfer, Vol. 105, pp. 341-349.

Ramadhyani, S., Zenouzi, M., and Astill, K. N., 1984,
"Combined Natural and Forced Convective Heat Transfer in Spherical

Annuli," ASME Journal of Heat Transfer, Vol. 106, pp. 811-816.

Rundell, H. A., Ward, E. G., and Cox, J. E., 1968, "Forced

Convection in Concentric-Sphere Heat Exchangers," ASME Journal of

Heat Transfer, Vol. 90, pp. 125-129.

Tuft, D, B., and Brandt, H., 1982, "Forced Convection Heat

Transfer in a Spherical Annulus Heat Exchanger", ASME Journal of

Heat Transfer, Vol. 104, pp. 670-677.

20



_Ward,

Concentric

E.

G.,

1966,

Spheres,"

Houston, Texas.

"Flow Through the Annulus Formed Between

Master's Thesis, University of Houston,

21



Table 1 Summary of Equations Solved.

Continuity o =1 r =20 S¢ = 0
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Energy o =T r =24 I S¢ =0
g g
, T
M
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Table 2 Turbulence Model Constants.
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Fig. 1 Geometry of a spherical annulus heat exchanger
analyzed and typical flow phenomena computed

Fig. 2 The model for (a) the near wall adjacent cell, (b)
the assumed variation of turbulence kinetic energy, and (c)
the assumed distribution of turbulent shear stress

Fig. 3 Measured and calculated total-system Nusselt number.
———— Experiment (Tuft and Brandt, 1982). Calculated:
0 laminar (Tuft and Brandt, 1982); 2@ laminar, non-
buoyant; O laminar, buoyant; [] k-e¢ model, buoyant;A k-¢€
model, non-buoyant

Fig. 4 Measured and calculated separation angles.
A Experiment (Tuft and Brandt, 1982). Calculated:
M laminar, buoyant; laminar, non-buoyant; @ laminar,

(Tuft and Brandt, 1982); {) k-e model; ${ mixing length model

Fig. 5 Local heat transfer rate based on a laminar flow

calculation. Experiment (Tuft and Brandt, 1982):
W R, -1086; A R, = 465; @ Ry = 110.  Calculated:
—R_ = 1086;em.—= Ry = Uf5, === Ry = 110j==R, =110,

non-buoyant

Fig. 6 Normalized radial average annulus water temperature
distribution based on a laminar flow calculation.

Experiment (Tuft and Brandt, 1982): M R, = 1086;
Re = 465; @ Rg = 110. Calculated: Reg = 1086;
- =Ry = U65;—===Rg = 1105===Ry = 110, non-buoyant

Fig. 7 Local heat transfer rate based on a k-e turbulence
model calculation. Experiment (Tuft and Brandt, 1982):
W R, -108; M R, = 465; @ R, = 110. Calculated:
1086; —-— Re = 1165;—--——Re =110

— R

e

Fig. 8 Normalized radial average annulus water temperature
distribution based on a k-eg turbulence model calculation.
Experimerit (Tuft and Brandt, 1982): B R, = 1086;

Re = 465; @ Rg = 110. Calculated: — Re = 1086;
—-—Rg = 465; === Rg = 110

Fig. 9 Horizontal velocity profiles for flow at a gap
Reynoldg number Oof‘ 260 at longitudinal coordinates, 6, of
30 , 85 and 115 .

Fig. 10 Temperature profiles for flow at a gap Reynoldsg
number of 260 at longitudinal coordinates, o, of 30, 85
and 115°,
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